LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034							
Lite	M.A. DEGREE EXAMINATION – ECON	OMICS					
¥.	FIRST SEMESTER – NOVEMBER 20	FIRST SEMESTER – NOVEMBER 2018					
LUCEAT I	16/17/18PEC1MC04 – MATHEMATICS AND STATIST	ICS FOR ECONOMICS					
	te: 29-10-2018 Dept. No.	Max. : 100 Marks					
Tin	ne: 01:00-04:00						
PART-A							
Answe	(5x4=20)						
1.	State any four examples where the Poisson probability can be applied.						
2.	Find the characteristic matrix of A = $\begin{bmatrix} 1 & 4 & 3 \\ 4 & 2 & 1 \\ 3 & 2 & 2 \end{bmatrix}$						
3.	5						
	 What are partitioned matrices? Write a short note on Prisoner's Dilemma. 						
7.							
PART-B							
Answe	er any FOUR questions in about 300 words each	(4 x10=40)					
8.	Students of a class were given an aptitude test. Their mark	s were found to be normally					
	ent of student scored:						
	i. more than 60 marks?						
	ii. between 45 and 65 marks?						
9.	Two companies A and B are competing for the same product.	. Their different strategies are					

given as follows: Company B Ι Π III Company A I -2 14 -2 -4 Π -5 -6 III -6 20 -8

Determine the optimal strategies for both the companies.

10. Find the solution of the equation system using Martin's rule.

 $\begin{array}{l} x_1 - x_2 + x_3 &= 4 \\ 2x_1 + x_2 - 3x_3 &= 0 \\ x_1 + x_2 + x_3 &= 2 \end{array}$

11. Explain the closed input-output model.

12. Examine the function $Z = 8x^3 + 2xy - 3x^2 + y^2 + 1$ for maximum, minimum and saddle points (if any.) $\delta^2 z = \delta^2 z$

13. Prove that $\frac{\delta^2 z}{\delta x \delta y} = \frac{\delta^2 z}{\delta y \delta x}$ for Z = 8x³- 6x³y² + 3xy³ - 7y² + 10.

14. For the following average cost function, find the minimum average cost and show that at minimum average cost, marginal cost and average cost are equal.

 $\bar{y} = 4 - 2x + 6x^2$

PART-C

Answer any TWO questions in about 1200 words each

(2x20=40)

15. Solve graphically

 $\begin{array}{ll} \text{Minimize C} = 12x_1 + 42x_2\\ \text{Subject to} & x_1 + 2x_2 \geq 3\\ & x_1 + 4x_2 \geq 4\\ & 3x_1 + x_2 \geq 3\\ & \text{and} & x_1, x_2 \geq 0 \end{array}$

16. Given the input matrix and final demand vector, find the output matrix X.

	0	$\frac{1}{4}$	$\frac{1}{2}$	
	1	4	3	[516]
A =	$\frac{1}{2}$	0	$\frac{1}{4}$	D = 258
	1	1		[129]
	4	4	٥J	

17. Derive the macro model of Harrod using differential equations.

18. Use the Lagrange-multiplier method to find the extreme value of $U = 4xy - y^2$ subject to 2x + y - 6 = 0.