LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.A. DEGREE EXAMINATION - ECONOMICS

FIRST SEMESTER - NOVEMBER 2018
16/17/18PEC1MCO4 - MATHEMATICS AND STATISTICS FOR ECONOMICS

Date: 29-10-2018
Time: 01:00-04:00
Dept. No.
\square Max. : 100 Marks

PART-A

Answer any FIVE questions in about 75 words each

1. State any four examples where the Poisson probability can be applied.
2. Find the characteristic matrix of $\mathrm{A}=\left[\begin{array}{lll}1 & 4 & 3 \\ 4 & 2 & 1 \\ 3 & 2 & 2\end{array}\right]$
3. Distinguish between a Hessian determinant and a Bordered Hessian with suitable examples.
4. What are partitioned matrices?
5. Write a short note on Prisoner's Dilemma.
6. Find the total differential of $U=3 x^{2}+x y-2 y^{3}$.
7. What are the consequences of Type II error?

PART-B

Answer any FOUR questions in about $\mathbf{3 0 0}$ words each
8. Students of a class were given an aptitude test. Their marks were found to be normally distributed with mean 60 and standard deviation 5 . What percent of student scored:
i. more than 60 marks?
ii. between 45 and 65 marks?
9. Two companies A and B are competing for the same product. Their different strategies are given as follows:

Company A	Company B			
		I	II	III
	I	-2	14	-2
	II	-5	-6	-4
	III	-6	20	-8

Determine the optimal strategies for both the companies.
10. Find the solution of the equation system using Martin's rule.

$$
\begin{gathered}
x_{1}-x_{2}+x_{3}=4 \\
2 x_{1}+x_{2}-3 x_{3}=0 \\
x_{1}+x_{2}+x_{3}=2
\end{gathered}
$$

11. Explain the closed input-output model.
12. Examine the function $Z=8 x^{3}+2 x y-3 x^{2}+y^{2}+1$ for maximum, minimum and saddle points (if any.)
13. Prove that $\frac{\delta^{2} z}{\delta x \delta y}=\frac{\delta^{2} z}{\delta y \delta x}$ for $\mathrm{Z}=8 \mathrm{x}^{3}-6 \mathrm{x}^{3} \mathrm{y}^{2}+3 x \mathrm{y}^{3}-7 \mathrm{y}^{2}+10$.
14. For the following average cost function, find the minimum average cost and show that at minimum average cost, marginal cost and average cost are equal.

$$
\bar{y}=4-2 x+6 x^{2}
$$

PART-C

Answer any TWO questions in about 1200 words each
$(2 \times 20=40)$
15. Solve graphically

$$
\begin{array}{lr}
\text { Minimize } C=12 x_{1}+42 x_{2} \\
\text { Subject to } & x_{1}+2 x_{2} \geq 3 \\
& x_{1}+4 x_{2} \geq 4 \\
3 x_{1}+x_{2} \geq 3 \\
\text { and } & x_{1}, x_{2} \geq 0
\end{array}
$$

16. Given the input matrix and final demand vector, find the output matrix X.

$$
A=\left[\begin{array}{lll}
0 & \frac{1}{4} & \frac{1}{3} \\
\frac{1}{2} & 0 & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & 0
\end{array}\right] \quad D=\left[\begin{array}{l}
516 \\
258 \\
129
\end{array}\right]
$$

17. Derive the macro model of Harrod using differential equations.
18. Use the Lagrange-multiplier method to find the extreme value of $U=4 x y-y^{2}$ subject to $2 x+$ $y-6=0$.
